Dashboards pour tous !

Aujourd’hui je vais vous parler d’un de mes sujets préférés du moment : la démocratisation de l’accès aux données du Web Analytics dans l’organisation, pour que chaque métier puisse avoir accès aux données pertinentes dans sa prise de décision. Le but étant d’éviter que les décisions ne soient prises uniquement sur l’intuition – ou bien pire – simplement en reproduisant ce qui a toujours été fait jusque là.

Aujourd’hui je vais vous parler d’un de mes sujets préférés du moment : la démocratisation de l’accès aux données du Web Analytics dans l’organisation, pour que chaque métier puisse avoir accès aux données pertinentes dans sa prise de décision. Le but étant d’éviter que les décisions ne soient prises uniquement sur l’intuition – ou bien pire – simplement en reproduisant ce qui a toujours été fait jusque là.

Libérez les données des analytics !

Pour avoir croisé bon nombre de clients depuis des années, il y a un schéma qui se reproduit invariablement chez beaucoup : dans une organisation, il y a en moyenne 2,5 personnes qui ont accès aux outils d’analytics. Et principalement, il s’agit des équipes analytics elles mêmes.

 

En dehors des équipes analytics, digital performance et IT, on n’a soit jamais eu accès, soit on aura perdu les logins depuis longtemps, ou bien on n’aura jamais trouvé d’intérêt dans ces graphiques et ces courbes qui affichent des choses très abstraites et éloignées du business : Bounce rate, Unique users, Sessions, Referrers, etc.

 

On aura bien essayé de s’intéresser aux rapports mensuels en PDF, reçus une fois par mois dans un email automatique, mais ces rapports sont trop longs ou trop synthétiques, et surtout : il présentent une vision « figée » de la donnée, de la donnée morte, en somme.

« You cannot manage that which you cannot measure »

Pourquoi s’intéresser autant à ces données ? Parce que selon le vieil adage, on ne peut pas efficacement gérer quelque chose qui ne peut pas être mesuré. (Corollaire : « Tout ce qui peut être mesuré ne doit pas nécessairement l’être »).

 

Du coup, quand on n’a pas accès aux données, on apprend à s’en passer. Ça me permet de placer ici une de mes quotes préférées, que l’on doit à Jim Barksdale, ancien CEO de Netscape :

 

« If we have data, let’s look at data. If all we have are opinions, let’s go with mine. »
Au passage, si vous avez aimé cette quote, je vous invite à lire cet article qui en dévoile un peu plus sur Jim Barksdale, qui a aussi été COO de FedEx et chez qui il a mis en place des moyens et des process de collecte et d’analyse des données. C’est passionnant.

Pourquoi chaque entité de votre entreprise devrait avoir accès à ses propres dashboards 

Pour toutes ces raisons, il est essentiel que chaque fonction et chaque métier dans votre organisation puisse avoir accès simplement et rapidement à des dashboards synthétiques, présentant les données sous un angle métier et non pas sous un angle technique (exit les métriques « standard » issues de Google Analytics…).

 

Et comme par définition, chaque entité intervient à un niveau différent et aura des préoccupations différentes, il est essentiel de concevoir plusieurs versions des dashboards, adaptés aux besoins de la cellule acquisition, du marketing produit, des ventes, du channel, du trade marketing, de la relation client et de la fidélité, etc.

 

Le tout, bien entendu, sans oublier les dashboards hyper synthétiques destinés au top management.
Exemple de dashboard avec Toucan Toco — il n’est question ici que de termes et KPIs métier

Lingua Franca

Quand on a fait ça, on s’assurera que les définitions et la compréhension des différents KPIs métier présentés dans ces tableaux de bord soient partagées et connues de toutes et tous. On peut sourire, mais c’est courant de rencontrer dans des organisations des personnes qui ne font pas de différence entre les Sessions, les Visiteurs Uniques ou bien les Pages Vues.

 

Oui, il est probable qu’il y ait besoin d’expliquer encore.

Dashboards = Data + Interactivité 

Exit les « rapports » en PDF qui circulent en pièce jointe, une fois par mois. Ca ne sert à rien, si ce n’est à informer le reste de l’organisation que les p’tits gars de la cellule Analytics font des choses. Ce dont les équipes ont besoin, c’est de pouvoir interroger les données, de façon interactive, au minimum en appliquant des critères de filtrage ou de tri, ou de restriction des dates de la période d’observation. En somme, tout ce que Google Data Studio permet de façon standard.
Bien entendu, on ne conseille pas d’utiliser les templates par défaut de Google Data Studio. Sauf si vous n’aimez pas vos collaborateurs :)
C’est la différence fondamentale entre Reporting et Analytics. Le reporting c’est une vision figée de ce qui s’est passé. Looking in the mirror. L’analytics est un processus interactif et itératif visant à apporter des réponses aux questions, confirmer ou infirmer des hypothèses. Contrairement au reporting, on ne « lit » pas les analytics, on les exploite.

Start with « why? »

Une fois qu’on en est arrivé là, c’est vraiment là que ça démarre. Parce que la finalité n’est pas l’accès aux données, c’est de pouvoir les comprendre, les analyser et ensuite prendre action. Je vais prendre deux exemples simples.

 

Sur le site d’une marque traditionnelle qui s’est lancée dans le commerce unifié, on constate en crunchant les données que certaines références produit ne sont commandées en ligne que le week-end, et pour certains SKUs, uniquement le dimanche. Pourquoi ? Et surtout, quand on a découvert cette info, qu’en fait-on ensuite ? Est-ce qu’on va promouvoir ces produits dès la home page pendant la journée de dimanche, pour fluidifier les parcours clients ? Ou bien au contraire est-ce qu’on va essayer de booster les ventes pendant les six autres jours de la semaine, via des promos ou des frais de port réduits ? Ou bien les deux ?

 

Autre cas, une marque de produits de cosmétique qui découvre que sur un certain segment de clientèle, parmi le top 20 des produits vendus en ligne, 5 sont des échantillons. Que faire de cette information ?

 

Est-ce que les clientes qui commandent des échantillons sont des nouvelles clientes, ou bien des nouvelles clientes de _ce_ produit spécifique ?

 

Si oui, que fait-on à J+15 ou J+30 pour les recontacter, savoir leur appréciation du produit en échantillon et tenter de les orienter vers le conditionnement normal ?

 

Si non, qui sont les clientes qui achètent régulièrement des échantillons et quel problème cherchent elles à résoudre ? Est-ce pour obtenir des conditionnements de moins de 100ml compatibles avec les bagages en cabines pour les voyages professionnels en avion ? Du coup, est-ce que sur le site ecommerce on propose des bundles de produits en petits conditionnements, ou bien est-ce que le site propose une facette de recherche permettant de rechercher ces petits conditionnements ?

 

Parce qu’au final, mesurer et analyser sans prendre action… ça ne sert à rien. Autant ne rien faire !

Predictive Analytics, ou le cache-sexe de la donnée

2017 : c’est année des bots et de l’IA. En résumé, ce qu’on entend quasiment quotidiennement, c’est : « Si tu n’utilises pas d’intelligence artificielle ou du machine-learning pour piloter ton business, tu vas rater ta target. »

TL;DR

 

    1. Les solutions d’Analytics sont au fil du temps devenues très puissantes, mais aussi très complexes
    2. En entreprise, l’exploitation de l’analytics et du web analytics reste basique, voire parfois quasi inexistante
    3. Les éditeurs de solutions vendent l’idée que l’IA couplée aux outils de marketing permet d’obtenir des résultats sans besoin d’injecter de l’intelligence humaine
    4. En l’absence d’intelligence humaine, les solutions de Predictive Analytics sont elles aussi vouées à l’échec

Intro

2017 : c’est année des bots et de l’IA. En résumé, ce qu’on entend quasiment quotidiennement, c’est : « Si tu n’utilises pas d’intelligence artificielle ou du machine-learning pour piloter ton business, tu vas rater ta target. »

Et si on avait un doute, les éditeurs de suites marketing enfoncent le clou et nous parlent tous les jours de leurs intelligences artificielles maison.

Chez IBM, les technologies cognitives s’appellent collectivement « Watson ». Chez Salesforce, on nous parle de « Einstein » – pas besoin de sortir de Polytechnique pour comprendre que Einstein c’est quelqu’un de beaucoup plus intelligent que nous.

Chez Adobe, c’est « Sensei », ce nom inspire plus la confiance envers un Maître dont les oracles (no pun intended) sont parfois difficiles à interpréter pour un mortel, mais ne devraient jamais être remises en cause :)

Qu’est-ce que le Predictive Analytics ?

(c) Dilbert

Plus sérieusement, le Predictive Analytics, c’est un ensemble de technologies utilisant des données, des algorithmes statistiques et de machine-learning en vue de déterminer la probabilité de l’occurrence de faits futurs par l’observation de faits et données passées.

On pourrait préciser un peu plus en disant qu’il existe deux grandes catégories : les algorithmes purement statistiques et utilisant diverses sortes de régressions sur des ensembles de données temporelles, et une autre catégorie basée sur les techniques de machine-learning (réseaux de neurones, deep-learning, etc.).

Predictive Analytics : une idée nouvelle ?

Non. L’idée n’est pas nouvelle. Simplement de nos jours elle s’appuie sur le big data et le machine-learning.

Il y a 30 ans de cela, en 1986, alors que j’étais encore étudiant, j’étais en stage chez IBM dans l’entrepôt de préparation de commandes entièrement robotisé de Evry-Lisses, et j’avais travaillé sur un logiciel collectant des données liées au fonctionnement, anomalies et pannes de divers équipements à des fins de maintenance préventive. Par exemple, un chariot autonome filoguidé sur lequel on constatait un nombre d’anomalies de pertes de signal de guidage en augmentation hors-normes, était sorti de la ligne de production et envoyé en maintenance avant d’avoir causé une panne plus profonde, voire une interruption de toute la ligne.

Plus récemment, vers 1997 j’étais en mission à Evry dans la biscuiterie Belin-LU où le service marketing avait développé un système de prévision des ventes, collectant des données de remontée de tickets de caisse afin de prévoir les ventes par produit, famille de produit, quantités et conditionnement afin de piloter les unités de production. Les biscuits sont fragiles et ont des DLC courtes. Produire de grosses quantités à l’aveuglette sans avoir une idée des niveaux de demande à venir, c’est assurément aller vers des volumes de retours massifs, et de la perte de bénéfices – sans même parler du gâchis de matières alimentaires.

Egalement, on a toutes et tous déjà entendu parler de GFT : Google Flu Trends. Or, même pour Google, ça n’était visiblement pas aussi facile que la légende le disait : Le service a fermé en 2015.

Bref, assez d’histoire ancienne…

Le Predictive Analytics qui marche

Mon propos ici n’est pas de dénigrer tout le domaine du Predictive Analytics. Il est des domaines – comme celui évoqué précédemment lié à la maintenance préventive des équipements et matériels – qui fonctionnent et donnent de bons résultats. Dernièrement, la SNCF a annoncé utiliser des technologies IBM Watson sur ces mêmes problématiques.

Marketing et Predictive Analytics

En revanche, il y a un domaine du Predictive Analytics pour lequel j’ai une approche, disons, plus nuancée, voire carrément critique. C’est le domaine du Predictive Analytics lié aux données marketing et appliqué au marketing digital.

Il est effarant de constater le nombre d’entreprises, de marques et de business de tous types, dans lesquels la culture de la donnée est encore quasi inexistante, et cela à tous les niveaux : on réalise des campagnes d’affichage en extérieur sur des affiches 4×3 ou sur du mobilier urbain mais… on n’a mis en place aucun processus pour récupérer de la donnée de tickets de caisse afin d’évaluer l’impact de la campagne sur les ventes. Ou bien on a encore des approches de campagnes marketing Print / Online / Social / etc qui sont totalement en silos, sans cohérence et sans aucun souci de répartition ou d’optimisation en fonction de l’attribution des ventes à ces points de contact. Les budgets sont pilotés par des services différents. Ou bien, encore, et de façon plus classique : on a bien mis en place une solution de Web analytics – gratuite ou payante, peu importe à ce niveau –  mais on ne fait quasiment aucune exploitation des données collectées, et les rapports produits en sont encore quasiment du niveau « nombre de visiteurs uniques / nombre de pages vues ». Nous sommes en 2017.

Ce nom de « Web analytics » est un terme très réducteur, et quasiment plus adapté. Les plus avancées de ces solutions permettent de nos jours en plus des données d’activité sur les sites web de croiser les chiffres du mobile, mais aussi d’y injecter des données et attributs provenant de votre CRM, afin de pouvoir affiner les analyses. Les outils d’Analytics donc sont devenus très complets, et très puissants.

Trop, peut être ?

Concrètement, qui dans votre organisation sait se connecter à votre solution Analytics, sait identifier les données intéressantes, peut produire un rapport ad-hoc permettant de comparer les comportements de deux cohortes distinctes ou pourrait analyser les causes d’un pic de trafic en anomalie ?

Cherchez bien. Peu de gens, certainement. Personne, parfois.

Predictive Analytics : le cache-sexe de la donnée

J’imagine qu’à un moment, les grands éditeurs de suites marketing ont été lassés de créer des solutions de plus en plus puissantes, mais de moins en moins bien utilisées par leurs clients. C’est le paradoxe de ces solutions devenues tellement puissantes qu’elles ont développé un côté si intimidant que finalement peu d’entreprises sont en mesure de les exploiter correctement, et n’en ont finalement qu’une utilisation basique.

Or, parmi ces clients ne réalisant pas la valeur de la solution qu’ils s’étaient offerts, certains étaient tentés de basculer vers le gratuit « good enough » au moment de renouveler le contrat : passer à Google Analytics Standard. Pour suivre leur business. Comme s’il s’agissait de leur blog perso. En 2017.

Alors, depuis, les éditeurs ont compris la leçon et face à l’alternative entre produire des solutions très puissantes mais complexes, ou bien tenter de simplifier à outrance au risque de produire des outils simplistes, ils ont ouvert une troisième voie : celle de l’intelligence artificielle et du Predictive Analytics.

Avec Watson, Einstein et autres Sensei, c’est la promesse de plateformes intelligentes, qui sont capables de faire automatiquement tout le travail d’analyse, de diagnostic voire de poser les actions correctives et de lancer les activations, de façon automatique, et sans aucun besoin d’intelligence humaine.

Bingo. L’argument fait mouche. Le Predictive Analytics est un must have.

Ce que certains ont oublié, c’est que, peu importe les souches algorithmiques de ces solutions (statistiques, machine-learning, etc.), elles ont besoin de données en quantité afin de produire des résultats. Et que, pour comparer vos chiffres de cette année, à ceux de l’année dernière… il faut au moins 1 an d’historique dans vos données. Damned. Ces solutions n’apporteront pas de réponses magiques overnight. L’an prochain, peut-être. Au mieux. Et d’ici là, vous allez devoir dresser la machine pour qu’elle apprenne que les soldes, les fêtes de fin d’année et la St Valentin sont des anomalies… normales :)

Reprenez le contrôle de vos données !

Nous sommes en 2017. Le marketing est définitivement Data Driven. Les expériences qu’attendent vos clients et vos consommateurs sont également construites sur des Insights qui sont tirés de l’analyse de données.

Reprenez le contrôle de vos données. L’investissement dans des solutions de pointe ne dispense en aucun cas d’investir dans des collaborateurs ou des partenaires qui pourront vous accompagner et sauront en tirer toute la valeur.

Faites-vous aider. Ces investissements sont payants.

DO’s and DON’Ts of Social Analytics – Conference material

This morning in Paris was our event « Social Media Analytics », with our partners from comScore and Adobe.

Here is my presentation about the Do’s and Don’ts of Social Analytics. This is the director’s cut version, along with the comments. Enjoy!

This morning in Paris was our event « Social Media Analytics », with our partners from comScore and Adobe.

Here is my presentation about the Do’s and Don’ts of Social Analytics. This is the director’s cut version, along with the comments. You can download the PDF version.

Enjoy!

Evènement « Social Analytics pour les CMOs » le 6 mars au matin chez Valtech

Nous co-organisons chez Valtech le 6 mars au matin un évènement sur le sujet du « Social Analytics », en collaboration avec nos confrères de comScore et de Adobe / Omniture. Inscription gratuite en ligne.

Nous co-organisons chez Valtech le 6 mars au matin un évènement sur le sujet du « Social Analytics », en collaboration avec nos confrères de comScore et de Adobe / Omniture.

Cette matinée est à destination des Directeurs Marketing, Responsables et Chefs de Projet Web Marketing ou Digital Marketing. Les présentations et démonstrations sont en Français et l’inscription est gratuite.

Le web social constitue le plus grand panel de consommateurs de la planète et les marketeurs s’efforcent de trouver comment en tirer parti. D’après une récente étude de comScore, un internaute passe en moyenne 5,6 heures* par mois sur les réseaux sociaux.

Dès lors, les entreprises souhaitent profiter efficacement de ce nouveau canal en plein essor pour créer et mesurer leur notoriété,  acquérir ou fidéliser leurs clients, développer leur activité, etc.

Cependant, dédier une part du budget marketing dans les médias sociaux mérite que l’on se pose les bonnes questions. Durant la matinée, nous nous attacherons à faire le point sur ce domaine, en l’illustrant par des démonstrations d’outils et le témoignage d’une marque de premier ordre ayant mis en oeuvre ces outils.

Nota : La capacité d’accueil est limitée par la configuration de la salle à 150 places, aussi si vous souhaitez y assister ne tardez pas à vous inscrire car on va selon toute vraisemblance atteindre le quota d’ici demain ou après demain.

Au plaisir de vous y rencontrer !

[Edit 20 Fév. 2012] Avec plus de 170 inscrits en moins d’une semaine, et 230 inscrits à ce jour, nous sommes « Sold Out ». Merci pour votre intérêt concernant cet évènement et rendez-vous le 6 mars au matin !

[Edit du 6 Mars 2012] Voilà, c’était ce matin. L’amphi pratiquement plein et un auditoire captivé jusqu’à 12h30 (captivé, pas captif :)). Vous pouvez consulter et télécharger le support de ma présentation « Les DO’s and DON’TS du Social Analytics » ici et depuis SlideShare.